NodV and NodW, a second flavonoid recognition system regulating nod gene expression in Bradyrhizobium japonicum.
نویسندگان
چکیده
In Bradyrhizobium japonicum, members of two global regulatory families, a LysR-type regulator, NodD1, and a two-component regulatory system, NodVW, positively regulate nod gene expression in response to plant-produced isoflavone signals. By analogy to other two-component systems, NodV and NodW are thought to activate transcription via a series of phosphorylation steps. These include the phosphorylation of NodV in response to the plant signal and the subsequent activation of NodW via the transfer of the phosphoryl group to an aspartate residue in the receiver domain of NodW. In this study, we demonstrated that NodW can be phosphorylated in vitro by both acetyl phosphate and its cognate kinase, NodV. In addition, in vivo experiments indicate that phosphorylation is induced by genistein, a known isoflavone nod gene inducer in B. japonicum. By using site-directed mutagenesis, a NodWD70N mutant in which the aspartate residue at the proposed phosphorylation site was converted to an asparagine residue was generated. This mutant was not phosphorylated in either in vitro or in vivo assays. Comparisons of the biological activity of both the wild-type and mutant proteins indicate that phosphorylation of NodW is essential for the ability of NodW to activate nod gene expression.
منابع مشابه
A two-component regulator mediates population-density-dependent expression of the Bradyrhizobium japonicum nodulation genes.
Bradyrhizobium japonicum nod gene expression was previously shown to be population density dependent. Induction of the nod genes is highest at low culture density and repressed at high population densities. This repression involves both NolA and NodD2 and is mediated by an extracellular factor found in B. japonicum conditioned medium. NolA and NodD2 expression is maximal at high population dens...
متن کاملChemical control of interstrain competition for soybean nodulation by Bradyrhizobium japonicum.
Previous research has shown that a significant limitation to the agricultural use of improved rhizobial inoculant strains is competition from the indigenous soil population. In this work, we sought to test whether chemical inhibitors of flavonoid-induced nod gene expression in Bradyrhizobium japonicum could be identified and utilized to affect interstrain competition for nodulation of soybeans....
متن کاملInvolvement of a Novel Genistein-Inducible Multidrug Efflux Pump of Bradyrhizobium japonicum Early in the Interaction with Glycine max (L.) Merr
The early molecular dialogue between soybean and the bacterium Bradyrhizobium japonicum is crucial for triggering their symbiotic interaction. Here we found a single large genomic locus that is widely separated from the symbiosis island and was conspicuously induced within minutes after the addition of genistein. This locus (named BjG30) contains genes for the multidrug efflux pump, TetR family...
متن کاملLotus corniculatus nodulation specificity is changed by the presence of a soybean lectin gene
Plant lectins have been implicated as playing an important role in mediating recognition and specificity in the Rhizobium-legume nitrogen-fixing symbiosis. To test this hypothesis, we introduced the soybean lectin gene Le1 either behind its own promoter or behind the cauliflower mosaic virus 35S promoter into Lotus corniculatus, which is nodulated by R. loti. We found that nodulelike outgrowths...
متن کاملNodulation gene regulation and quorum sensing control density-dependent suppression and restriction of nodulation in the Bradyrhizobium japonicum-soybean symbiosis.
The nodulation of Glycine max cv. Lambert and the nodulation-restricting plant introduction (PI) genotype PI 417566 by wild-type Bradyrhizobium japonicum USDA110 is regulated in a population-density-dependent manner. Nodulation on both plant genotypes was suppressed (inhibited) when plants received a high-density inoculum (10(9) cells/ml) of strain USDA110 grown in complex medium, and more nodu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 179 9 شماره
صفحات -
تاریخ انتشار 1997